30 M10A: Multiple Regression

This content draws on material from Statistical Inference via Data Science: A ModernDive into R and the Tidyverse by Chester Ismay and Albert Y. Kim, licensed under CC BY-NC-SA 4.0

Changes to the source material include addition of new material; light editing; rearranging, removing, and combining original material; adding and changing links; and adding first-person language from current author.

The resulting content is licensed under CC BY-NC-SA 4.0

30.1 Introduction

In Chapter 27 we explored ideas related to modeling for explanation. In particular, we learned that the goal of modeling is to make explicit the relationship between some outcome variable \(y\) and some explanatory variable \(x\). While there are many approaches to modeling, we focused on one particular technique: linear regression, one of the most commonly used and easy-to-understand approaches to modeling. Furthermore, to keep things simple, we only considered models with one explanatory \(x\) variable that was either numerical in Section 27.2 or categorical in Section 27.3.

In this chapter on multiple regression, we’ll start considering models that include more than one explanatory variable \(x\). You can imagine when trying to model a particular outcome variable, like teaching evaluation scores as in Section 27.2 or life expectancy as in Section 27.3, that it would be useful to include more than just one explanatory variable’s worth of information.

Since our regression models will now consider more than one explanatory variable, the interpretation of the associated effect of any one explanatory variable must be made in conjunction with the other explanatory variables included in your model. Let’s begin!

Needed packages

Let’s load all the packages needed for this chapter (this assumes you’ve already installed them). Recall from our discussion in Section 18.4 that loading the tidyverse package by running library(tidyverse) loads the following commonly used data science packages all at once:

  • ggplot2 for data visualization
  • dplyr for data wrangling
  • tidyr for converting data to “tidy” format
  • readr for importing spreadsheet data into R
  • As well as the more advanced purrr, tibble, stringr, and forcats packages

If needed, read Section 6.4 for information on how to install and load R packages.

library(tidyverse)
library(moderndive)
library(skimr)
library(ISLR)

30.2 One numerical and one categorical explanatory variable

Let’s revisit the instructor evaluation data from UT Austin we introduced in Section 27.2. We studied the relationship between teaching evaluation scores as given by students and “beauty” scores. The variable teaching score was the numerical outcome variable \(y\), and the variable “beauty” score (bty_avg) was the numerical explanatory \(x\) variable.

In this section, we are going to consider a different model. Our outcome variable will still be teaching score, but we’ll now include two different explanatory variables: age and gender. It is important to note that gender is (mis)understood in this dataset as a binary variable. This is partially due to views on gender that were more common at the time that this variable was created, but it’s also still common practice for data scientists to treat gender as a binary phenomenon. To put it bluntly, it’s a lot easier to work with an oversimplified view of gender than it is to try to capture all of its beautiful, messy, complex glory in a dataset. Furthermore, as much as I reject the idea of gender as a binary, there’s still some value that we can get out of the oversimplified view in this dataset, so we’re going to acknowledge the data’s shortcomings but see what we can still get out of them.

Could it be that instructors who are older receive better teaching evaluations from students? Or could it instead be that younger instructors receive better evaluations? Are there differences in evaluations given by students for instructors of different genders? We’ll answer these questions by modeling the relationship between these variables using multiple regression, where we have:

  1. A numerical outcome variable \(y\), the instructor’s teaching score, and
  2. Two explanatory variables:
    1. A numerical explanatory variable \(x_1\), the instructor’s age.
    2. A categorical explanatory variable \(x_2\), the instructor’s (binary) gender.

30.2.1 Exploratory data analysis

Recall that data on the 463 courses at UT Austin can be found in the evals data frame included in the moderndive package. However, to keep things simple, let’s select() only the subset of the variables we’ll consider in this chapter, and save this data in a new data frame called evals_walkthrough_multiple. Note that these are different than the variables chosen in Chapter 27.

evals_walkthrough_multiple <- evals %>%
  select(ID, score, age, gender)

Recall the three common steps in an exploratory data analysis we saw in Subsection 27.2.1:

  1. Looking at the raw data values.
  2. Computing summary statistics.
  3. Creating data visualizations.

Let’s first look at the raw data values by either looking at evals_walkthrough_multiple using RStudio’s spreadsheet viewer or by using the glimpse() function from the dplyr package:

glimpse(evals_walkthrough_multiple)
Rows: 463
Columns: 4
$ ID     <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, …
$ score  <dbl> 4.7, 4.1, 3.9, 4.8, 4.6, 4.3, 2.8, 4.1, 3.4, 4.5, 3.8, 4.5, 4.6…
$ age    <int> 36, 36, 36, 36, 59, 59, 59, 51, 51, 40, 40, 40, 40, 40, 40, 40,…
$ gender <fct> female, female, female, female, male, male, male, male, male, f…

Let’s also display a random sample of 5 rows of the 463 rows corresponding to different courses in Table 30.1. Remember due to the random nature of the sampling, you will likely end up with a different subset of 5 rows.

evals_walkthrough_multiple %>% sample_n(size = 5)
Table 30.1: A random sample of 5 out of the 463 courses at UT Austin
ID score age gender
129 3.7 62 male
109 4.7 46 female
28 4.8 62 male
434 2.8 62 male
330 4.0 64 male

Now that we’ve looked at the raw values in our evals_walkthrough_multiple data frame and got a sense of the data, let’s compute summary statistics. As we did in our exploratory data analyses in Sections 27.2.1 and 27.3.1 from the previous chapter, let’s use the skim() function from the skimr package, being sure to only select() the variables of interest in our model:

evals_walkthrough_multiple %>% select(score, age, gender) %>% skim()
Table 30.2: Data summary
Name Piped data
Number of rows 463
Number of columns 3
_______________________
Column type frequency:
factor 1
numeric 2
________________________
Group variables None

Variable type: factor

skim_variable n_missing complete_rate ordered n_unique top_counts
gender 0 1 FALSE 2 mal: 268, fem: 195

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
score 0 1 4.17 0.54 2.3 3.8 4.3 4.6 5 ▁▁▅▇▇
age 0 1 48.37 9.80 29.0 42.0 48.0 57.0 73 ▅▆▇▆▁

Observe that we have no missing data, that there are 268 courses taught by male instructors and 195 courses taught by female instructors, and that the average instructor age is 48.37. Recall that each row represents a particular course and that the same instructor often teaches more than one course. Therefore, the average age of the unique instructors may differ.

Furthermore, let’s compute the correlation coefficient between our two numerical variables: score and age. Recall from Subsection 27.2.1 that correlation coefficients only exist between numerical variables. We observe that they are “weakly negatively” correlated.

evals_walkthrough_multiple %>% 
  get_correlation(formula = score ~ age)
# A tibble: 1 × 1
        cor
      <dbl>
1 -0.107032

Let’s now perform the last of the three common steps in an exploratory data analysis: creating data visualizations. Given that the outcome variable score and explanatory variable age are both numerical, we’ll use a scatterplot to display their relationship. How can we incorporate the categorical variable gender, however? By mapping the variable gender to the color aesthetic, thereby creating a colored scatterplot. We’ve created a similar scatterplot before, but this time we’re adding color = gender to the aes()thetic mapping.

ggplot(evals_walkthrough_multiple, aes(x = age, y = score, color = gender)) +
  geom_point() +
  labs(x = "Age", y = "Teaching Score", color = "Gender") +
  geom_smooth(method = "lm", se = FALSE)
Colored scatterplot of relationship of teaching score and age.

Figure 30.1: Colored scatterplot of relationship of teaching score and age.

In the resulting Figure 30.1, observe that ggplot() assigns a default in red/blue color scheme to the points and to the lines associated with the two levels of gender: female and male. Furthermore, the geom_smooth(method = "lm", se = FALSE) layer automatically fits a different regression line for each group.

We notice some interesting trends. First, there are almost no women faculty over the age of 60 as evidenced by lack of red dots above \(x\) = 60. Second, while both regression lines are negatively sloped with age (i.e., older instructors tend to have lower scores), the slope for age for the female instructors is more negative. In other words, female instructors are paying a harsher penalty for advanced age than the male instructors.

30.2.2 Interaction model

Let’s now quantify the relationship of our outcome variable \(y\) and the two explanatory variables using one type of multiple regression model known as an interaction model. We’ll explain where the term “interaction” comes from at the end of this section.

In particular, we’ll write out the equation of the two regression lines in Figure 30.1 using the values from a regression table. Before we do this, however, let’s go over a brief refresher of regression when you have a categorical explanatory variable \(x\).

Recall in Subsection 27.3.2 we fit a regression model for countries’ life expectancies as a function of which continent the country was in. In other words, we had a numerical outcome variable \(y\) = lifeExp and a categorical explanatory variable \(x\) = continent which had 5 levels: Africa, Americas, Asia, Europe, and Oceania. Let’s re-display a regression table we looked at last week:

Table 30.3: Regression table for life expectancy as a function of continent
term estimate std_error statistic p_value lower_ci upper_ci
intercept 54.8 1.02 53.45 0 52.8 56.8
continent: Americas 18.8 1.80 10.45 0 15.2 22.4
continent: Asia 15.9 1.65 9.68 0 12.7 19.2
continent: Europe 22.8 1.70 13.47 0 19.5 26.2
continent: Oceania 25.9 5.33 4.86 0 15.4 36.5

Recall our interpretation of the estimate column. Since Africa was the “baseline for comparison” group, the intercept term corresponds to the mean life expectancy for all countries in Africa of 54.8 years. The other four values of estimate correspond to “offsets” relative to the baseline group. So, for example, the “offset” corresponding to the Americas is +18.8 as compared to the baseline for comparison group Africa. In other words, the average life expectancy for countries in the Americas is 18.8 years higher. Thus the mean life expectancy for all countries in the Americas is 54.8 + 18.8 = 73.6. The same interpretation holds for Asia, Europe, and Oceania.

Going back to our multiple regression model for teaching score using age and gender in Figure 30.1, we generate the regression table using the same two-step approach from Chapter 27: we first “fit” the model using the lm() “linear model” function and then we apply the get_regression_table() function. This time, however, our model formula won’t be of the form y ~ x, but rather of the form y ~ x1 * x2. In other words, our two explanatory variables x1 and x2 are separated by a * sign:

# Fit regression model:
score_model_interaction <- lm(score ~ age * gender, data = evals_walkthrough_multiple)

# Get regression table:
get_regression_table(score_model_interaction)
Table 30.4: Regression table for interaction model
term estimate std_error statistic p_value lower_ci upper_ci
intercept 4.883 0.205 23.80 0.000 4.480 5.286
age -0.018 0.004 -3.92 0.000 -0.026 -0.009
gender: male -0.446 0.265 -1.68 0.094 -0.968 0.076
age:gendermale 0.014 0.006 2.45 0.015 0.003 0.024

Looking at the regression table output in Table 30.4, there are four rows of values in the estimate column. While it is not immediately apparent, using these four values we can write out the equations of both lines in Figure 30.1. First, since the word female comes alphabetically before male, female instructors are the “baseline for comparison” group. Thus, intercept is the intercept for only the female instructors.

This holds similarly for age. It is the slope for age for only the female instructors. Thus, the red regression line in Figure 30.1 has an intercept of 4.883 and slope for age of -0.018. Remember that for this data, while the intercept has a mathematical interpretation, it has no practical interpretation since instructors can’t have zero age.

What about the intercept and slope for age of the male instructors in the blue line in Figure 30.1? This is where our notion of “offsets” comes into play once again.

The value for gender: male of -0.446 is not the intercept for the male instructors, but rather the offset in intercept for male instructors relative to female instructors. The intercept for the male instructors is intercept + gender: male = 4.883 + (-0.446) = 4.883 - 0.446 = 4.437.

Similarly, age:gendermale = 0.014 is not the slope for age for the male instructors, but rather the offset in slope for the male instructors. Therefore, the slope for age for the male instructors is age + age:gendermale \(= -0.018 + 0.014 = -0.004\). Thus, the blue regression line in Figure 30.1 has intercept 4.437 and slope for age of -0.004. Let’s summarize these values in Table 30.5 and focus on the two slopes for age:

Table 30.5: Comparison of intercepts and slopes for interaction model
Gender Intercept Slope for age
Female instructors 4.883 -0.018
Male instructors 4.437 -0.004

Since the slope for age for the female instructors was -0.018, it means that on average, a female instructor who is a year older would have a teaching score that is 0.018 units lower. For the male instructors, however, the corresponding associated decrease was on average only 0.004 units. While both slopes for age were negative, the slope for age for the female instructors is more negative. This is consistent with our observation from Figure 30.1, that this model is suggesting that age impacts teaching scores for female instructors more than for male instructors.

Let’s now write the equation for our regression lines, which we can use to compute our fitted values \(\widehat{y} = \widehat{\text{score}}\).

\[ \begin{aligned} \widehat{y} = \widehat{\text{score}} &= b_0 + b_{\text{age}} \cdot \text{age} + b_{\text{male}} \cdot \mathbb{1}_{\text{is male}}(x) + b_{\text{age,male}} \cdot \text{age} \cdot \mathbb{1}_{\text{is male}}(x)\\ &= 4.883 -0.018 \cdot \text{age} - 0.446 \cdot \mathbb{1}_{\text{is male}}(x) + 0.014 \cdot \text{age} \cdot \mathbb{1}_{\text{is male}}(x) \end{aligned} \]

Whoa! That’s even more daunting than the equation you saw for the life expectancy as a function of continent in Subsection 27.3.2! However, if you recall what an “indicator function” does, the equation simplifies greatly. In the previous equation, we have one indicator function of interest:

\[ \mathbb{1}_{\text{is male}}(x) = \left\{ \begin{array}{ll} 1 & \text{if } \text{instructor } x \text{ is male} \\ 0 & \text{otherwise}\end{array} \right. \]

Second, let’s match coefficients in the previous equation with values in the estimate column in our regression table in Table 30.4:

  1. \(b_0\) is the intercept = 4.883 for the female instructors
  2. \(b_{\text{age}}\) is the slope for age = -0.018 for the female instructors
  3. \(b_{\text{male}}\) is the offset in intercept = -0.446 for the male instructors
  4. \(b_{\text{age,male}}\) is the offset in slope for age = 0.014 for the male instructors

Let’s put this all together and compute the fitted value \(\widehat{y} = \widehat{\text{score}}\) for female instructors. Since for female instructors \(\mathbb{1}_{\text{is male}}(x)\) = 0, the previous equation becomes

\[ \begin{aligned} \widehat{y} = \widehat{\text{score}} &= 4.883 - 0.018 \cdot \text{age} - 0.446 \cdot 0 + 0.014 \cdot \text{age} \cdot 0\\ &= 4.883 - 0.018 \cdot \text{age} - 0 + 0\\ &= 4.883 - 0.018 \cdot \text{age}\\ \end{aligned} \]

which is the equation of the red regression line in Figure 30.1 corresponding to the female instructors in Table 30.5. Correspondingly, since for male instructors \(\mathbb{1}_{\text{is male}}(x)\) = 1, the previous equation becomes

\[ \begin{aligned} \widehat{y} = \widehat{\text{score}} &= 4.883 - 0.018 \cdot \text{age} - 0.446 + 0.014 \cdot \text{age}\\ &= (4.883 - 0.446) + (- 0.018 + 0.014) * \text{age}\\ &= 4.437 - 0.004 \cdot \text{age}\\ \end{aligned} \]

which is the equation of the blue regression line in Figure 30.1 corresponding to the male instructors in Table 30.5.

Phew! That was a lot of arithmetic! Don’t fret, however, this is as complex as modeling will get in this course. If you’re still a little unsure about using indicator functions and using categorical explanatory variables in a regression model, we highly suggest you re-read Subsection 27.3.2. This involves only a single categorical explanatory variable and thus is much simpler.

Before ending this section, I’ll explain why we refer to this type of model as an “interaction model.” The \(b_{\text{age,male}}\) term in the equation for the fitted value \(\widehat{y}\) = \(\widehat{\text{score}}\) is what’s known in statistical modeling as an “interaction effect.” The interaction term corresponds to the age:gendermale = 0.014 in the final row of the regression table in Table 30.4.

We say there is an interaction effect if the associated effect of one variable depends on the value of another variable. That is to say, the two variables are “interacting” with each other. Here, the associated effect of the variable age depends on the value of the other variable gender. The difference in slopes for age of +0.014 of male instructors relative to female instructors shows this.

Another way of thinking about interaction effects on teaching scores is as follows. For a given instructor at UT Austin, there might be an associated effect of their age by itself, there might be an associated effect of their gender by itself, but when age and gender are considered together there might be an additional effect above and beyond the two individual effects.

30.2.3 Parallel slopes model

When creating regression models with one numerical and one categorical explanatory variable, we are not just limited to interaction models as we just saw. Another type of model we can use is known as a parallel slopes model. Unlike interaction models where the regression lines can have different intercepts and different slopes, parallel slopes models still allow for different intercepts but force all lines to have the same slope. The resulting regression lines are thus parallel. Let’s visualize the best-fitting parallel slopes model to evals_walkthrough_multiple.

Unfortunately, the geom_smooth() function in the ggplot2 package does not have a convenient way to plot parallel slopes models. Evgeni Chasnovski thus created a special purpose function called geom_parallel_slopes() that is included in the moderndive package. You won’t find geom_parallel_slopes() in the ggplot2 package, but rather the moderndive package. Thus, if you want to be able to use it, you will need to load both the ggplot2 and moderndive packages. Using this function, let’s now plot the parallel slopes model for teaching score. Notice how the code is identical to the code that produced the visualization of the interaction model in Figure 30.1, but now the geom_smooth(method = "lm", se = FALSE) layer is replaced with geom_parallel_slopes(se = FALSE).

ggplot(evals_walkthrough_multiple, aes(x = age, y = score, color = gender)) +
  geom_point() +
  labs(x = "Age", y = "Teaching Score", color = "Gender") +
  geom_parallel_slopes(se = FALSE)
Parallel slopes model of score with age and gender.

Figure 30.2: Parallel slopes model of score with age and gender.

Observe in Figure 30.2 that we now have parallel lines corresponding to the female and male instructors, respectively: here they have the same negative slope. This is telling us that instructors who are older will tend to receive lower teaching scores than instructors who are younger. Furthermore, since the lines are parallel, the associated penalty for being older is assumed to be the same for both female and male instructors.

However, observe also in Figure 30.2 that these two lines have different intercepts as evidenced by the fact that the blue line corresponding to the male instructors is higher than the red line corresponding to the female instructors. This is telling us that irrespective of age, female instructors tended to receive lower teaching scores than male instructors.

In order to obtain the precise numerical values of the two intercepts and the single common slope, we once again “fit” the model using the lm() “linear model” function and then apply the get_regression_table() function. However, unlike the interaction model which had a model formula of the form y ~ x1 * x2, our model formula is now of the form y ~ x1 + x2. In other words, our two explanatory variables x1 and x2 are separated by a + sign:

# Fit regression model:
score_model_parallel_slopes <- lm(score ~ age + gender, data = evals_walkthrough_multiple)
# Get regression table:
get_regression_table(score_model_parallel_slopes)
Table 30.6: Regression table for parallel slopes model
term estimate std_error statistic p_value lower_ci upper_ci
intercept 4.484 0.125 35.79 0.000 4.238 4.730
age -0.009 0.003 -3.28 0.001 -0.014 -0.003
gender: male 0.191 0.052 3.63 0.000 0.087 0.294

Similarly to the regression table for the interaction model from Table 30.4, we have an intercept term corresponding to the intercept for the “baseline for comparison” female instructor group and a gender: male term corresponding to the offset in intercept for the male instructors relative to female instructors. In other words, in Figure 30.2 the red regression line corresponding to the female instructors has an intercept of 4.484 while the blue regression line corresponding to the male instructors has an intercept of 4.484 + 0.191 = 4.675. Once again, since there aren’t any instructors of age 0, the intercepts only have a mathematical interpretation but no practical one.

Unlike in Table 30.4, however, we now only have a single slope for age of -0.009. This is because the model dictates that both the female and male instructors have a common slope for age. This is telling us that an instructor who is a year older than another instructor received a teaching score that is on average 0.009 units lower. This penalty for being of advanced age applies equally to both female and male instructors.

Let’s summarize these values in Table 30.7, noting the different intercepts but common slopes:

Table 30.7: Comparison of intercepts and slope for parallel slopes model
Gender Intercept Slope for age
Female instructors 4.484 -0.009
Male instructors 4.675 -0.009

Let’s now write the equation for our regression lines, which we can use to compute our fitted values \(\widehat{y} = \widehat{\text{score}}\).

\[ \begin{aligned} \widehat{y} = \widehat{\text{score}} &= b_0 + b_{\text{age}} \cdot \text{age} + b_{\text{male}} \cdot \mathbb{1}_{\text{is male}}(x)\\ &= 4.484 -0.009 \cdot \text{age} + 0.191 \cdot \mathbb{1}_{\text{is male}}(x) \end{aligned} \]

Let’s put this all together and compute the fitted value \(\widehat{y} = \widehat{\text{score}}\) for female instructors. Since for female instructors the indicator function \(\mathbb{1}_{\text{is male}}(x)\) = 0, the previous equation becomes

\[ \begin{aligned} \widehat{y} = \widehat{\text{score}} &= 4.484 -0.009 \cdot \text{age} + 0.191 \cdot 0\\ &= 4.484 -0.009 \cdot \text{age} \end{aligned} \]

which is the equation of the red regression line in Figure 30.2 corresponding to the female instructors. Correspondingly, since for male instructors the indicator function \(\mathbb{1}_{\text{is male}}(x)\) = 1, the previous equation becomes

\[ \begin{aligned} \widehat{y} = \widehat{\text{score}} &= 4.484 -0.009 \cdot \text{age} + 0.191 \cdot 1\\ &= (4.484 + 0.191) - 0.009 \cdot \text{age}\\ &= 4.675 -0.009 \cdot \text{age} \end{aligned} \]

which is the equation of the blue regression line in Figure 30.2 corresponding to the male instructors.

Great! We’ve considered both an interaction model and a parallel slopes model for our data. Let’s compare the visualizations for both models side-by-side in Figure 30.3.

Comparison of interaction and parallel slopes models.

Figure 30.3: Comparison of interaction and parallel slopes models.

At this point, you might be asking yourself: “Why would we ever use a parallel slopes model?”. Looking at the left-hand plot in Figure 30.3, the two lines definitely do not appear to be parallel, so why would we force them to be parallel? For this data, I agree! It can easily be argued that the interaction model on the left is more appropriate. However, in the upcoming Subsection 30.4.1 on model selection, we’ll see an example where it can be argued that the case for a parallel slopes model might be stronger.

30.2.4 Observed/fitted values and residuals

For brevity’s sake, in this section we’ll only compute the observed values, fitted values, and residuals for the interaction model which we saved in score_model_interaction.

Say that you have an instructor who identifies as female and is 36 years old. What fitted value \(\widehat{y}\) = \(\widehat{\text{score}}\) would our model yield? Say, you have another instructor who identifies as male and is 59 years old. What would their fitted value \(\widehat{y}\) be?

We’ll answer this question visually first for the female instructor by finding the intersection of the red regression line and the vertical line at \(x\) = age = 36. I’ve marked this value with a large red dot in Figure 30.4. Similarly, we can identify the fitted value \(\widehat{y}\) = \(\widehat{\text{score}}\) for the male instructor by finding the intersection of the blue regression line and the vertical line at \(x\) = age = 59. I’ve marked this value with a large blue dot in Figure 30.4.

Fitted values for two new professors.

Figure 30.4: Fitted values for two new professors.

What are these two values of \(\widehat{y}\) = \(\widehat{\text{score}}\) precisely? We can use the equations of the two regression lines we computed in Subsection 30.2.2, which in turn were based on values from the regression table in Table 30.4:

  • For all female instructors: \(\widehat{y} = \widehat{\text{score}} = 4.883 - 0.018 \cdot \text{age}\)
  • For all male instructors: \(\widehat{y} = \widehat{\text{score}} = 4.437 - 0.004 \cdot \text{age}\)

So our fitted values would be: \(4.883 - 0.018 \cdot 36 = 4.24\) and \(4.437 - 0.004 \cdot 59 = 4.20\), respectively.

Now what if we want the fitted values not just for these two instructors, but for the instructors of all 463 courses included in the evals_walkthrough_multiple data frame? Doing this by hand would be long and tedious! This is where the get_regression_points() function from the moderndive package can help: it will quickly automate the above calculations for all 463 courses. Here, I’ll present a preview of just the first 10 rows out of 463 in Table 30.8.

regression_points <- get_regression_points(score_model_interaction)
regression_points
Table 30.8: Regression points (First 10 out of 463 courses)
ID score age gender score_hat residual
1 4.7 36 female 4.25 0.448
2 4.1 36 female 4.25 -0.152
3 3.9 36 female 4.25 -0.352
4 4.8 36 female 4.25 0.548
5 4.6 59 male 4.20 0.399
6 4.3 59 male 4.20 0.099
7 2.8 59 male 4.20 -1.401
8 4.1 51 male 4.23 -0.133
9 3.4 51 male 4.23 -0.833
10 4.5 40 female 4.18 0.318

It turns out that the female instructor of age 36 taught the first four courses, while the male instructor taught the next 3. The resulting \(\widehat{y}\) = \(\widehat{\text{score}}\) fitted values are in the score_hat column. Furthermore, the get_regression_points() function also returns the residuals \(y-\widehat{y}\). Notice, for example, the first and fourth courses the female instructor of age 36 taught had positive residuals, indicating that the actual teaching scores they received from students were greater than their fitted score of 4.25. On the other hand, the second and third courses this instructor taught had negative residuals, indicating that the actual teaching scores they received from students were less than 4.25.

30.3 Two numerical explanatory variables

Let’s now switch gears and consider multiple regression models where instead of one numerical and one categorical explanatory variable, we now have two numerical explanatory variables. The dataset we’ll use is from An Introduction to Statistical Learning with Applications in R (ISLR), an intermediate-level textbook on statistical and machine learning (James et al., 2017). Its accompanying ISLR R package contains the datasets to which the authors apply various machine learning methods.

One frequently used dataset in this book is the Credit dataset, where the outcome variable of interest is the credit card debt of 400 individuals. Other variables like income, credit limit, credit rating, and age are included as well. Note that the Credit data is not based on real individuals’ financial information, but rather is a simulated dataset used for educational purposes.

In this section, we’ll fit a regression model where we have

  1. A numerical outcome variable \(y\), the cardholder’s credit card debt
  2. Two explanatory variables:
    1. One numerical explanatory variable \(x_1\), the cardholder’s credit limit
    2. Another numerical explanatory variable \(x_2\), the cardholder’s income (in thousands of dollars).

30.3.1 Exploratory data analysis

Let’s load the Credit dataset. To keep things simple, let’s select() the subset of the variables we’ll consider in this chapter, and save this data in the new data frame credit_walkthrough. Notice I’m using select() slightly differently than I introduced it in Subsection 18.2.5. For example, by running this code, we’ll select the Balance variable from Credit but then save it with a new variable name debt. We’ll do this because here the term “debt” is easier to interpret than “balance.”

library(ISLR)
credit_walkthrough <- Credit %>% as_tibble() %>% 
  select(ID, debt = Balance, credit_limit = Limit, 
         income = Income, credit_rating = Rating, age = Age)

You can observe the effect of our use of select() in the first common step of an exploratory data analysis: looking at the raw values either in RStudio’s spreadsheet viewer or by using glimpse().

glimpse(credit_walkthrough)
Rows: 400
Columns: 6
$ ID            <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 1…
$ debt          <int> 333, 903, 580, 964, 331, 1151, 203, 872, 279, 1350, 1407…
$ credit_limit  <int> 3606, 6645, 7075, 9504, 4897, 8047, 3388, 7114, 3300, 68…
$ income        <dbl> 14.9, 106.0, 104.6, 148.9, 55.9, 80.2, 21.0, 71.4, 15.1,…
$ credit_rating <int> 283, 483, 514, 681, 357, 569, 259, 512, 266, 491, 589, 1…
$ age           <int> 34, 82, 71, 36, 68, 77, 37, 87, 66, 41, 30, 64, 57, 49, …

Furthermore, let’s look at a random sample of five out of the 400 credit card holders in Table 30.9. Once again, note that due to the random nature of the sampling, you will likely end up with a different subset of five rows.

credit_walkthrough %>% sample_n(size = 5)
Table 30.9: Random sample of 5 credit card holders
ID debt credit_limit income credit_rating age
272 436 4866 45.0 347 30
239 52 2910 26.5 236 58
87 815 6340 55.4 448 33
108 0 3189 39.1 263 72
149 0 2420 15.2 192 69

Now that we’ve looked at the raw values in our credit_walkthrough data frame and got a sense of the data, let’s move on to the next common step in an exploratory data analysis: computing summary statistics. Let’s use the skim() function from the skimr package, being sure to only select() the columns of interest for our model:

credit_walkthrough %>% select(debt, credit_limit, income) %>% skim()
Table 30.10: Data summary
Name Piped data
Number of rows 400
Number of columns 3
_______________________
Column type frequency:
numeric 3
________________________
Group variables None

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
debt 0 1 520.0 459.8 0.0 68.8 459.5 863.0 1999 ▇▅▃▂▁
credit_limit 0 1 4735.6 2308.2 855.0 3088.0 4622.5 5872.8 13913 ▆▇▃▁▁
income 0 1 45.2 35.2 10.3 21.0 33.1 57.5 187 ▇▂▁▁▁

Observe the summary statistics for the outcome variable debt: the mean and median credit card debt are $520.01 and $459.50, respectively, and that 25% of card holders had debts of $68.75 or less. Let’s now look at one of the explanatory variables credit_limit: the mean and median credit card limit are $4735.6 and $4622.50, respectively, while 75% of card holders had incomes of $57,470 or less.

Since our outcome variable debt and the explanatory variables credit_limit and income are numerical, we can compute the correlation coefficient between the different possible pairs of these variables. First, we can run the get_correlation() command as seen in Subsection 27.2.1 twice, once for each explanatory variable:

credit_walkthrough %>% get_correlation(debt ~ credit_limit)
credit_walkthrough %>% get_correlation(debt ~ income)

Or we can simultaneously compute them by returning a correlation matrix which we display in Table 30.11. We can see the correlation coefficient for any pair of variables by looking them up in the appropriate row/column combination.

credit_walkthrough %>% 
  select(debt, credit_limit, income) %>% 
  cor()
Table 30.11: Correlation coefficients between credit card debt, credit limit, and income
debt credit_limit income
debt 1.000 0.862 0.464
credit_limit 0.862 1.000 0.792
income 0.464 0.792 1.000

For example, the correlation coefficient of:

  1. debt with itself is 1 as we would expect based on the definition of the correlation coefficient.
  2. debt with credit_limit is 0.862. This indicates a strong positive linear relationship, which makes sense as only individuals with large credit limits can accrue large credit card debts.
  3. debt with income is 0.464. This is suggestive of another positive linear relationship, although not as strong as the relationship between debt and credit_limit.
  4. As an added bonus, we can read off the correlation coefficient between the two explanatory variables of credit_limit and income as 0.792.

We say there is a high degree of collinearity between the credit_limit and income explanatory variables. Collinearity (or multicollinearity) is a phenomenon where one explanatory variable in a multiple regression model is highly correlated with another.

So in our case since credit_limit and income are highly correlated, if we knew someone’s credit_limit, we could make pretty good guesses about their income as well. Thus, these two variables provide somewhat redundant information. However, we’ll leave discussion on how to work with collinear explanatory variables to a more intermediate-level book on regression modeling.

Let’s visualize the relationship of the outcome variable with each of the two explanatory variables in two separate plots in Figure 30.5.

ggplot(credit_walkthrough, aes(x = credit_limit, y = debt)) +
  geom_point() +
  labs(x = "Credit limit (in $)", y = "Credit card debt (in $)", 
       title = "Debt and credit limit") +
  geom_smooth(method = "lm", se = FALSE)

ggplot(credit_walkthrough, aes(x = income, y = debt)) +
  geom_point() +
  labs(x = "Income (in $1000)", y = "Credit card debt (in $)", 
       title = "Debt and income") +
  geom_smooth(method = "lm", se = FALSE)
Relationship between credit card debt and credit limit/income.

Figure 30.5: Relationship between credit card debt and credit limit/income.

Observe there is a positive relationship between credit limit and credit card debt: as credit limit increases so also does credit card debt. This is consistent with the strongly positive correlation coefficient of 0.862 we computed earlier. In the case of income, the positive relationship doesn’t appear as strong, given the weakly positive correlation coefficient of 0.464.

However, the two plots in Figure 30.5 only focus on the relationship of the outcome variable with each of the two explanatory variables separately. To visualize the joint relationship of all three variables simultaneously, we need a 3-dimensional (3D) scatterplot as seen in Figure 30.6. Each of the 400 observations in the credit_walkthrough data frame are marked with a blue point where

  1. The numerical outcome variable \(y\) debt is on the vertical axis.
  2. The two numerical explanatory variables, \(x_1\) income and \(x_2\) credit_limit, are on the two axes that form the bottom plane.
3D scatterplot and regression plane.

Figure 30.6: 3D scatterplot and regression plane.

Furthermore, we also include the regression plane. Recall from Subsection 27.4.2 that regression lines are “best-fitting” in that of all possible lines we can draw through a cloud of points, the regression line minimizes the sum of squared residuals. This concept also extends to models with two numerical explanatory variables. The difference is instead of a “best-fitting” line, we now have a “best-fitting” plane that similarly minimizes the sum of squared residuals. Head to this website to open an interactive version of this plot in your browser.

30.3.2 Regression plane

Let’s now fit a regression model and get the regression table corresponding to the regression plane in Figure 30.6. To keep things brief in this subsection, we won’t consider an interaction model for the two numerical explanatory variables income and credit_limit like we did in Subsection 30.2.2 using the model formula score ~ age * gender. Rather we’ll only consider a model fit with a formula of the form y ~ x1 + x2. Confusingly, however, since we now have a regression plane instead of multiple lines, the label “parallel slopes” doesn’t apply when you have two numerical explanatory variables. Just as we have done multiple times throughout Chapters 27 and this chapter, the regression table for this model using our two-step process is in Table 30.12.

# Fit regression model:
debt_model <- lm(debt ~ credit_limit + income, data = credit_walkthrough)
# Get regression table:
get_regression_table(debt_model)
Table 30.12: Multiple regression table
term estimate std_error statistic p_value lower_ci upper_ci
intercept -385.179 19.465 -19.8 0 -423.446 -346.912
credit_limit 0.264 0.006 45.0 0 0.253 0.276
income -7.663 0.385 -19.9 0 -8.420 -6.906
  1. We first “fit” the linear regression model using the lm(y ~ x1 + x2, data) function and save it in debt_model.
  2. We get the regression table by applying the get_regression_table() function from the moderndive package to debt_model.

Let’s interpret the three values in the estimate column. First, the intercept value is -$385.179. This intercept represents the credit card debt for an individual who has credit_limit of $0 and income of $0. In our data, however, the intercept has no practical interpretation since no individuals had credit_limit or income values of $0. Rather, the intercept is used to situate the regression plane in 3D space.

Second, the credit_limit value is $0.264. Taking into account all the other explanatory variables in our model, for every increase of one dollar in credit_limit, there is an associated increase of on average $0.26 in credit card debt. Just as we did in Subsection 27.2.2, we are cautious not to imply causality as we saw in Subsection 27.4.1 that “correlation is not necessarily causation.” We do this merely stating there was an associated increase.

Furthermore, we preface our interpretation with the statement, “taking into account all the other explanatory variables in our model.” Here, by all other explanatory variables we mean income. We do this to emphasize that we are now jointly interpreting the associated effect of multiple explanatory variables in the same model at the same time.

Third, income = -$7.66. Taking into account all other explanatory variables in our model, for every increase of one unit of income ($1000 in actual income), there is an associated decrease of, on average, $7.66 in credit card debt.

Putting these results together, the equation of the regression plane that gives us fitted values \(\widehat{y}\) = \(\widehat{\text{debt}}\) is:

\[ \begin{aligned} \widehat{y} &= b_0 + b_1 \cdot x_1 + b_2 \cdot x_2\\ \widehat{\text{debt}} &= b_0 + b_{\text{limit}} \cdot \text{limit} + b_{\text{income}} \cdot \text{income}\\ &= -385.179 + 0.263 \cdot\text{limit} - 7.663 \cdot\text{income} \end{aligned} \]

Recall however in the right-hand plot of Figure 30.5 that when plotting the relationship between debt and income in isolation, there appeared to be a positive relationship. In the last discussed multiple regression, however, when jointly modeling the relationship between debt, credit_limit, and income, there appears to be a negative relationship of debt and income as evidenced by the negative slope for income of -$7.663. What explains these contradictory results? A phenomenon known as Simpson’s Paradox, whereby overall trends that exist in aggregate either disappear or reverse when the data are broken down into groups. In Subsection 30.4.4 we elaborate on this idea by looking at the relationship between credit_limit and credit card debt, but split along different income brackets.

30.3.3 Observed/fitted values and residuals

Let’s also compute all fitted values and residuals for our regression model using the get_regression_points() function and present only the first 10 rows of output in Table 30.13. Remember that the coordinates of each of the blue points in our 3D scatterplot in Figure 30.6 can be found in the income, credit_limit, and debt columns. The fitted values on the regression plane are found in the debt_hat column and are computed using our equation for the regression plane in the previous section:

\[ \begin{aligned} \widehat{y} = \widehat{\text{debt}} &= -385.179 + 0.263 \cdot \text{limit} - 7.663 \cdot \text{income} \end{aligned} \]

get_regression_points(debt_model)
Table 30.13: Regression points (First 10 credit card holders out of 400)
ID debt credit_limit income debt_hat residual
1 333 3606 14.9 454 -120.8
2 903 6645 106.0 559 344.3
3 580 7075 104.6 683 -103.4
4 964 9504 148.9 986 -21.7
5 331 4897 55.9 481 -150.0
6 1151 8047 80.2 1127 23.6
7 203 3388 21.0 349 -146.4
8 872 7114 71.4 948 -76.0
9 279 3300 15.1 371 -92.2
10 1350 6819 71.1 873 477.3

30.5 Conclusion

Congratulations! We’ve completed our introduction to modeling and are ready to shift our attention to statistical inference. Statistical inference is the science of inferring about some unknown quantity using sampling.

The most well-known examples of sampling in practice involve polls. Because asking an entire population about their opinions would be a long and arduous task, pollsters often take a smaller sample that is hopefully representative of the population. Based on the results of this sample, pollsters hope to make claims about the entire population.

Once we’ve covered Chapters 33 on sampling, 36 on confidence intervals, and 39 on hypothesis testing, we’ll revisit the regression models we studied in Chapters 27 and 30 in Chapter 42 on inference for regression. So far, we’ve only studied the estimate column of all our regression tables. The next four chapters focus on what the remaining columns mean: the standard error (std_error), the test statistic, the p_value, and the lower and upper bounds of confidence intervals (lower_ci and upper_ci).

Furthermore in Chapter 42, we’ll revisit the concept of residuals \(y - \widehat{y}\) and discuss their importance when interpreting the results of a regression model. We’ll perform what is known as a residual analysis of the residual variable of all get_regression_points() outputs. Residual analyses allow you to verify what are known as the conditions for inference for regression. On to Chapter 33 on sampling!

30.6 References

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2017). An Introduction to Statistical Learning: With Applications in r. Springer